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Abstract

We derive a 3D multi-band moment model and its associated closure for radiation and neutron transfer. The new clo-
sure is analytical and nonlinear but very simple. Its derivation is based on the maximum entropy closure and assumes a
Wien shape for the intensity when used in the Eddington tensor. In the multi-band approach, the opacity is re-arranged
(binned) according to the opacity value. The multi-band model propagates identically all photons/neutrons having the
same opacity. This has been found to be a good approximation on average since the transport is mostly determined by
the opacities and less by the frequencies. This same concept is used to derive the closure. We prove on two complex test
atmospheres (the solar atmosphere and an artificial atmosphere) that the closure we have derived has good accuracy. All
approximations made in deriving the model have been carefully numerically checked and quantified.
Published by Elsevier Inc.
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1. Introduction

When computing radiation or neutron transfer one is tempted to use macroscopic moment models since
theoretically they carry a much lower computational cost than does direct solution of the radiative transfer
equation (RTE). In radiative transfer, they have been used in many applications related to combustion, cloud
physics, astrophysics, heat transfer, and in problems involving the coupling of radiation with other large sets
of equations [1–5]. Similarly, for neutron transfer (for which the transfer law is very similar to the RTE) these
methods have also been frequently used because of their lower cost [6–8]. In all these applications, the steady
diffusion formulation was most often used, and the closure chosen was P1, i.e. PR = 1/3ER where ER and PR

denote the radiative energy and pressure tensor, respectively.
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In the derivation of usual moment models and in their closures, the frequency integration is either analyt-
ically performed over the whole frequency spectrum (gray case) [9,10,17] or not performed at all (monochro-
matic case) [27,28]. The use of these models is then theoretically limited to gray/monochromatic cases. The
goal of this paper is to derive a valid moment model and its closure for the case of general non-gray media.

As the reader may know, the closure model, i.e. Eddington tensor1 DR contained in the model PR = DRER,
is the crucial modeling step required in the moment formulation. It must guarantee the correct speed (bounded
by the speed of light) and direction of propagation for the photons/neutrons, and it strongly affects the accu-
racy of the modeling. This term can be seen as a flux limiter [11–13,9], because one of its roles is to limit the
propagation of the flux. Pioneering work in the 1970s on flux limiters is well referenced in [14] (see also [3, p.
479] and [15]). Flux limiters were introduced because simple closures such as P1 violate the flux limit FR < cER

in transparent media. The accuracy is then low unless the transport is nearly isotropic [16,3,17–19]. This has
been well known for many years; for instance in [16, p. 148], the author noted . . .The interface between a fluid
and a vacuum requires special examination. Since the vacuum does not supply any photons, the radiation field at

the interface is strongly anisotropic (all photons travel only in the direction toward the vaccum), and, strictly

speaking the diffusion application is inapplicable.2 As a result, most recent numerical algorithms always try
to incorporate flux limiters [20–24,14,25,26] as they are required for the accuracy of the solution.

The main focus over the past twenty five years has been to improve the closure models of moment methods
for simple gray/monochromatic media, and much has been achieved [27,13,9,12,10,29–31,28,32,17]. Greater
generality is now possible in the non-gray case. In particular, techniques developed for deriving closure models
on full-spectrum problems, such as the maximum entropy concept [27], can be applied to the derivation of by-
band or by-group closure models. This development is also encouraged by recent accurate results found in the
gray case [17,34] for various multi-dimensional configurations.

For non-gray problems, the spectral dependence of the opacity is handled either through multi-group or
multi-band divisions. The present work will contribute to developing moment methods in the multi-band
framework. For the multi-group case, the reader should refer to [35,36,33]. However, the derivation of
non-gray moment models is not straightforward; the Eddington tensor is much more complex since the inte-
gration over frequency cannot be done analytically except in special cases. Recently in [35] (see also references
therein) this subject has been treated by a new consistent multi-group moment model. In that work, the fre-
quency domain is divided into n groups, and a moment system is derived for each group. The radiative pres-
sure is closed by a model using the maximum entropy closure [27,31,28]. A complex mathematical formulation
is then used by the author to approximate the required integrals over each frequency group and angle. (The
closure is, surprisingly, not explicitly written in [35]; we found it in [36, pp. 52–59]). Unfortunately, it leads to a
non-analytical model (see also [33] where a similar closure is derived based on half-moments [32,17]). The
mathematical reason is related to the fact that the integral

R m1

m0
BðT ; mÞdm, where BðT ; mÞ is the Planck function,

does not admit a known closed form for m0 and m1 finite (see [5, p. 11]). The great complexity of this model and
the lack of evidence of its accuracy have encouraged us to derive a simpler multi-band moment model which
we now describe.

Our approach is dictated by the fact that we wish to avoid handling integrals
R m1

m0
in order to be able to

derive a closed-form closure. As a result, we choose to divide the opacity space {r(m)} into n bins (or bands)
{r 2 [0, +1]}. An opacity bin (or band) corresponds in general to disjoint sets of frequencies. For this reason,
and contrary to our title, the method presented here will be referred to from now on as a by-bin or multi-bin

method, rather than as a by-band or multi-band method.
Binning is an old idea which consists in creating photon bins in which the frequencies m in the whole spec-

trum (or in a contiguous subset) are regrouped according to the value of the opacities at those frequencies. The
general technique is referred to as the opacity distribution function (ODF) in [3, p. 365–366] (and references
therein). The original idea is attributed to Chandrasekhar in [37] by Kurucz ([38]), who uses the method in
his ATLAS codes [39] for providing absorption coefficients for a large variety of stars [40]. The ODF was used
in the early seventies [38,40,39,42,41] and is commonly used today in [48,43,44,46,47,45]. In [38,41,3,43,45], the
1 This term is also referred to as the pressure closure, Eddington tensor, closure model or term, or as flux limiter since it acts like one.
2 The word diffusion denotes in the author’s context the P1 diffusion formulation.
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bins are called pickets, while the word bin has been used as a verb in [3, p. 365]. Binning by opacity instead of
grouping by frequency has long been used for solar simulations (see for instance [48,50,51,49,52,53] and ref-
erences therein). We have also recently used this approach to re-entry problems [54,55]. In those works, in
[46,47], and in this paper, the binning is done over the whole spectrum. In the multi-band method ([56] and
references therein), or in the ODF method, the same rearrangement is usually done inside each of ng groups.
For simplicity, in the present work we use the multi-band, or equivalently the ODF method, with ng = 1. How-
ever, we will see in Section 5.5 that this is not mandatory; our model is fully general and can be used for ng 6¼ 1,
provided there are enough frequencies in a group to guarantee a coherent binning. A by-bin re-arrangement of
the opacity is also performed on the whole spectrum in the FSK method [57,5], where a PDF is introduced and
smooths the opacity. Similarly, smooth, weighted re-arrangements of the opacity are also proposed in [58,59]
and in [60]. The goal of the current paper is not to detail or discuss those techniques but to provide a multi-
band/bin/picket moment system usable in combination with any rearrangement of the frequency according to
the opacity value.

The subdivision of the frequency space into opacity bins modifies the definitions of the moments: integrals
over a range of frequencies, e.g.

R miþ1

mi
, become summations over sets of scattered frequencies:

P
m2mi . The by-bin

method conceptually offers three main advantages. First, it is easy to retain all frequencies in the model, which
allows a full description of the medium; for instance one can use five bins following the opacity scales of the
problem (e.g., very opaque, opaque, semi transparent, mostly transparent, and transparent [3, p. 365]). Sec-
ond, for very low or high opacities the closure model is essentially exact; that is, there exist rmin and rmax

for which the Eddington factor (cf. Eq. (22) for the exact definition) vr . 1/3 for r > rmax, and vr . 1 for
r < rmin. This is because the opacity binning will automatically sort the anisotropies f such that: fr . 0 for
r > rmax and fr . 1 for r < rmin (cf. text below Eq. (22) for the exact definition of the anisotropies f). Third,
and most importantly, such a division will prevent the occurrence of a huge range of values of the anisotropy
factor inside a given bin, and consequently prevent a huge range of values of the Eddington tensor. The two
last remarks are related to the fact that transport depends on the value of the opacity not the value of the fre-

quency, as well summarized in [45]. This will lead to a more accurate closure, as we now sketch.
When a standard frequency grouping is done, the variation of the local opacity, rm, can be very large inside

a group. As a result, the local anisotropy factor, fm, will vary over its full range, from 0 to 1, as will the Edd-
ington tensor closure vm, from 1/3 to 1. The chosen mean value vg, taken to represent the group, must account
for a set of vm covering this range. The resulting error due to the modeling is then likely to be high because of
the large differences between the mean and the specific m-values.3 On the other hand, when an opacity binning
is done, only small variations of the anisotropy factors fm inside a bin are expected. In consequence, small vari-
ations of the Eddington factors in the bin should follow, avoiding strong deviations between the mean value in
the bin, vb, and the sample values, vm, leading to better accuracy. The actual situation is somewhat more com-
plex than this sketch describes, as we will see in our numerical examples, but the main concepts remain.

The downsides to this method are dealing with disjoint sets of m’s and the requirement to make two kinds of
approximations. First, to achieve our goal of finding a simple and closed-form closure model, an approxima-
tion to the ideal maximum-entropy pseudo-intensity will be used in the radiative case: it is assumed that the
Planck-form pseudo-intensity can be approximated by a Wien form Iw. For neutron transport, this is not an
approximation since this form follows directly from the use of the maximum entropy closure [27,28,61]. How-
ever, for radiative transfer it should theoretically hold only when hm/(kT)� 1. We will prove numerically that,
when used to close the Eddington tensor, i.e.

R
X IwX2 dX=

R
X Iw dX, this approximation is valid. If one wants to

avoid this approximation, the integral of the full pseudo-intensity may be done numerically (at high cost), as in
[36], but we achieve good numerical results without the very complex formulation and cost of that work.

The second required approximation is that the mean radiative anisotropy and Eddington factor in a bin, fb

and vb, are assumed to be representative of the average of all fm and vm in the bin. We believe this approxima-
tion can be done in a by-bin framework, while it cannot be done in a by-group division (as explained two para-
graphs above). These approximations are needed to derive the closure. They will be specifically tested
numerically and shown to be reasonable. In the limit where there are as many bins as frequencies, it will
3 In most Eddington factor models the loss of accuracy occurs in transition zones since both limits 1/3 and 1 are exact.
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be shown that the closure derived here is the one derived first by Minerbo [27] for radiation and later on by
Brunner and Holloway [28] for neutron transport. Both derivations were done in the monochromatic case,
and the only approximation they made is the Wien form of the pseudo-intensity, which comes from the max-
imum entropy closure. But when the medium is strongly dependent on the frequency, a large number of fre-
quencies is needed to resolve the dependence, and solving one moment model per discrete frequency has too a
high computational cost.

Two numerical problems of radiative transfer (the neutron case contains fewer approximations) will be con-
sidered. First, a 1D realistic spherically symmetric model of the atmosphere of the sun will be considered. The
opacity and temperature profiles of this atmosphere have been provided by Stein and Nordlund
[48,50,51,49,52]. It is composed of 2748 frequencies. The opacity profile is strongly dependent on the fre-
quency, leading to a challenging modeling problem. It will be shown that the closure model is accurate (less
than 10% error in overall average when using all 2748 frequency bins, thus proving that the Wien form of the
pseudo-intensity, which is the only approximation made in this case, constitutes a valid approximation for
radiative transfer at these temperatures and frequencies.

For smaller numbers of bins reasonable accuracy is also obtained, even in the limit of as few as 5–10 bins (if
they are correctly chosen). This result gives confidence that, along with the by-bin closure, the approximations
made inside a bin are reasonable as well. The model is also found usable for computing the radiation in the
solar chromosphere.

The second test case is the same solar atmosphere modified in scale by decreasing the radius of the atmo-
sphere. This produces much more anisotropic radiation as a challenge to the model. The closure model is also
found acceptably accurate.

In addition it will be demonstrated that the new closure constitutes a great improvement compared to the
P1 model, the accuracy of which is found to be very poor. We will also show that no major numerical difficulty
or cost is introduced by the non-analytic form of the closure model; the Newton’s method solution required by
the closure takes only a few iterations (<10).

The article is organized as follows. In Sections 2 and 3, the various definitions and the binning are intro-
duced. The by-bin moment model is derived in Section 4, and its closure is described in Section 5. In Section 6,
the numerical results are presented.

2. The radiative transfer equation

The radiative transfer equation in a non-scattering, emitting, and absorbing non-gray medium is given by
1

c
otI þX � rI ¼ rðmÞBðm; T Þ � rðmÞI ; ð1Þ
where the intensity I = I(t, r, X, m) is a function of the time t, the position r, the direction of propagation X,
and the frequency m. Here c is the velocity of light and r(m), the spectral absorption coefficient or opacity, is
assumed strongly dependent on m. The Planck radiative intensity B describes the isotropic emission of the med-
ium at frequency m and temperature T by
Bðm; T Þ ¼ 2hm3

c2
exp

hm
kT

� �
� 1

� ��1

; ð2Þ
where h is the Planck constant and k the Boltzmann constant.

3. Definitions

Given a medium of opacity r(m) 2 [0,1] for m 2 [0,1], we divide the range of values of r into n bins by
choosing n + 1 distinct increasing numbers biþ1

2
for i = 0, . . . , n. These b are the boundary values of the bins

in r-space with b1
2
¼ 0 and bnþ1

2
¼ 1. We will refer to the range of r 2 bi�1

2

h
; biþ1

2

�
as the ith bin. Spatially con-

stant biþ1
2

will be used in the present work; the case of spatially varying bins will be addressed in another article,
but it should be noted that spatial dependence does not affect the main focus of this paper, which is the der-
ivation of the closure. For instance, the non-constant case introduces extra source-terms to transfer rays from
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one bin to another as they move through space [56]. The numerical tests on the closure will be performed using
a spatially dependent opacity but spatially fixed b by using a spatial average of r(m, x) to define the bins.

For purposes of simulation, frequency space is discretized into a set of values mj, each representing a small
range of frequencies mj � Dm/2 6 m < mj + Dm/2. The set of frequencies in the ith bin is then represented by some
subset mik :
fmik ; k ¼ 1; . . . ; kmaxg ¼ mjjrðmjÞ 2 bi�1
2
;

h
biþ1

2

�n o
: ð3Þ
In general, the number of frequency samples per bin, kmax, will vary from bin to bin. For all frequencies m in
the ith bin, r(m) will be approximated as rðmÞ � �ri, where the mean opacity in the ith bin, �ri, is taken to be
either the simple arithmetic mean or some more complex mean [62–64] over the bin.

We now give some notational abbreviations to simplify the expressions to follow. We will denote the inte-
gration of a function f over 4p steradians of direction as ÆfæX and that over the frequency interval mi � Dm/2 to
mi + Dm/2 as hf imi

; a summation over the discrete frequencies mik in the ith bin will be written as
P

ik
; finally, a

quantity computed inside the ith bin will be denoted by a superscript i.
The by-bin moments for the ith bin are defined by
Ei
Rðt; rÞ ¼

1

c

X
ik

Z mikþDm=2

mik�Dm=2

Iðt; r;X; mÞdm

* +
X

¼ 1

c

X
ik

hIiX;mik
ð4Þ

Fi
Rðt; rÞ ¼

X
ik

Z mikþDm=2

mik�Dm=2

XIðt; r;X; mik Þdm

* +
X

¼
X

ik

hXIiX;mik
ð5Þ

Pi
Rðt; rÞ ¼

1

c

X
ik

Z mikþDm=2

mik�Dm=2

X�XIðt; r;X; mik Þdm

* +
X

ð6Þ

¼ 1

c

X
ik

hX�XIiX;mik
ð7Þ
In the limit Dm! 0 the first of these becomes
Ei
Rðt; rÞ ¼

1

c

X
ik

lim
Dm!0

Z mikþDm=2

mik�Dm=2

hIðt; r;X; mÞiXdm ð8Þ

¼ 1

c

X
ik

Dm
Z 1

0

hIðt; r;X; mÞiXdðm� mik Þdm ð9Þ
which is the formulation usually adopted [56].
The full moments are derived from the bin-moments by summing over all bins: ER ¼

Pn
i¼1Ei

R;FR ¼
Pn

i¼1Fi
R

and PR ¼
Pn

i¼1Pi
R.

4. Derivation of the by-bin moment model

Integrating the radiative transfer Eq. (1) over direction, over frequency interval Dm, and summing over the
disjoint set mik of m’s which define the bin i, one obtains
ot
1

c

X
ik

hIðt; r;X; mik ÞiX;mik
þr �

X
ik

hXIðt; r;X; mik ÞiX;mik
ð10Þ

¼
X

ik

hrðmik ÞBðT ; mik ÞiX;mik
�
X

ik

hrðmik ÞIðt; r;X; mik ÞiX;mik
ð11Þ
The sum and partial differential operators commute since the binning does not depend on position or time.
As mentioned above, the opacity rðmik Þ in a bin is either approximated by an average value or by a mean coef-
ficient, both denoted here �ri; it is independent of m. Thus Eq. (11) becomes
otEi
R þr � Fi

R ¼ c4p�riS
i � c�riEi

R; ð12Þ

where Si ¼

P
ik
BðT ; mik Þ.
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Multiplying the radiative transfer Eq. (1) by X and integrating as before leads to
ot
1

c

X
ik

hXIðt; r;X; mik ÞiX;mik
þr �

X
ik

hX�XIðt; r;X; mik ÞiX;mik
ð13Þ

¼ �
X

ik

hrðmik ÞXIðt; r;X; mik ÞiX;mik
ð14Þ
which, with the same arguments, leads to
1

c
otF

i
R þ cr � Pi

R ¼ ��riFi
R: ð15Þ
The multi-band (or by-bin) moment model consists of the two equations (12) and (15) describing the evo-
lution of the by-bin energy and flux. To close the system, a model for the radiative pressure as a function of
these two moments is presented in the following section.
5. Derivation of the by-bin model closure

It is assumed that, for the purpose of modeling the radiative pressure, the intensity in the ith bin,
Ii = I(t, r, X, m), can be approximated by a prescribed function I i

�ðt; r;X; mÞ for all m in the bin. The form of
this function is taken to be the maximum entropy closure [27,31] for radiative transfer where the entropy func-
tion used for photons is the Bose–Einstein one [61]. The maximum entropy result for the intensity is
I i
�ðt; r;X; mÞ ¼

2hm3

c2
exp

hm
k

Aið1� Bi �XÞ
� �

� 1

� ��1

ð16Þ
The scalar and vector coefficients, Ai and Bi, are computed from the two constraints Ei
R ¼ 1=c

P
ik
hI i
�iX;mik

and Fi
R ¼

P
ik
hXI i

�iX;mik
(as done for instance in [27,31,28,17] for the gray/monochromatic case).

Some remarks should be made here which distinguish this work from the gray/monochromatic case. For a
given bin i, the intensity Ii and its approximation I i

� are functions of m for that bin. However, the coefficients Ai

and Bi do not depend on frequency and are constant throughout the bin. Thus, in order that the intensity for
each m in the bin be accurately represented, it is important to have accurate values of these moments; this is
easier in a by-bin framework than in a by-group one.

It could be assumed that Pi
R ’ 1

c

P
ik
hX�XI i

�iX;mik
. Unfortunately, the intensity (16) does not lead to a

closed form expression when used in the pressure expression. There are two alternatives at this point. One
could choose to carry an approximation of the integral as done in [36]; this leads in our opinion to too complex
a form of the model. Alternatively, one can try to simplify the function I i

� which must be integrated. This
approach, which we follow here, has the advantage of leading to a simpler final pressure model, but it does
require approximation of the integrand. We hence approximate the Planck intensity function by the Wien
form:
I i
� ’ I i

wðt; r;X; mÞ ¼
2hm3

c2
exp

hm
k

Aið1� Bi �XÞ
� �� ��1

ð17Þ
The Wien function approximates the Planck one well when the exponential term is larger than 1, which is
true in the Wien limit hmAi(1 � Bi Æ X)/k� 1 [61]. In addition, this function maximizes the Boltzmann entropy
[27,28,61], which applies for neutrons as shown in [28]. Hence it is a good approximation for neutrons. For the
sake of simplicity and without any further approximation, we rewrite the Wien function for a given bin as
follows:
I i
w ¼ AiðmÞ expðmBi �XÞ ð18Þ
where Ai and Bi designate new dimensional quantities that have absorbed the universal constant coefficients:
Ai(m) = 2hm3/c2exp(�hmAi/k) and Bi = h/k AiBi. As explained above, in a bin framework, there is only one Ai(m)
and one Bi per bin, but in the limit of an infinite number of bins/frequencies, there is one Ai(m) and one Bi per
frequency, which should then be written Am(m) and Bm.
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It should be noted here that we are now in a very similar situation to [27,28], where the intensity (18) is used
to derive a closure model for radiation [27] and neutron transport [28].

We now take angular moments of the function I i
w (18) and use definitions (4)–(7) to obtain expressions for

the angular moments Em
R;F

m
R, and Pm

R by direct integration. In doing so we approximate the integrals over
½mik � Dm=2; mik þ Dm=2� by the midpoint rule to obtain equalities relating the integrands; this approximation
will be used for all subsequent developments. The resulting equations are valid for all m in bin i:
Em
R ¼

1

c
hI i

wiX ¼ 4p
AiðmÞ
Bim

sinhðBimÞ; ð19Þ

Fm
R ¼ hXI i

wiX ¼ cEm
R

Bi

Bi

coshðBimÞ
sinhðBimÞ

� 1

Bim

� �
¼ cEm

R

Bi

Bi

1

tanhðBimÞ
� 1

Bim

� �
; ð20Þ
and
Pm
R ¼

1

c
hX�XI i

wiX ¼ Em
R

1� vm

2
Idþ 3vm � 1

2

fm � fm

f m2

� �
; ð21Þ
where
vm ¼ 1� 2
F m

R

Em
RBim

¼ 1� 2
f m

Bim
; ð22Þ
in which fm ¼ Fm
R=ðcEm

RÞ is the anisotropy factor for each wavelength, and the norm of a vector v has been de-
noted as v. We refer to [27,28,17] for the details of the integrations.

5.1. Closing Bi

Using Eq. (20), the norm of the flux is given by
F m
R ¼ cEm

R

1

tanhðBimÞ
� 1

Bim

� �
: ð23Þ
It should be noted here that combining Eq. (20) and (23) leads without any approximation to
fm

f m
¼ Bi

Bi
ð24Þ
This result comes from the assumed form of the pseudo-intensity, (16) or (18), which requires that, inside
bin i, there exists one Ai(m) and one Bi.

Summing over the m’s in the bin in Eq. (23), we obtain
X
ik

F
mik
R

cE
mik
R

¼
X

ik

1

tanhðBimik Þ
� 1

Bimik

� �
: ð25Þ
We now assume that, within a bin
f i ¼
P

ik
F

mik
RP

ik
cE

mik
R

’ 1

Ni

X
ik

F
mik
R

cE
mik
R

¼ 1

Ni

X
ik

f mik : ð26Þ
where Ni denotes the number of m’s in bin i. In other words we assume that the bin-value fi is close to the aver-
age of the f m’s: f i ’ 1=Ni

P
ik

f mik . This approximation is exact for infinitely narrow bins or when fm is constant

in a bin since f i ¼
P

ik
F

mik
R =
P

ik
cE

mik
R ¼

P
ik

cf mik E
mik
R =
P

ik
cE

mik
R ¼ f mik

� �
. In other cases Eq. (26) seems reasonable

provided the bins are defined for fairly narrow ranges of opacity, such that the anisotropy does not vary too
much in each bin (at a given position). This assumption will be tested numerically in Section 6.3. Using Eqs.
(26), Eq. (25) becomes simply
f i ’ 1

Ni

X
ik

1

tanhðBimik Þ
� 1

Ni

X
ik

1

Bimik

: ð27Þ
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Eq. (27) will be called the closure equation. It is a nonlinear scalar relationship which gives the value of the
scalar Bi for a given scalar fi.

Similarly, the vector Bi is given by
f i ’ Bi

Bi

1

Ni

X
ik

1

tanhðBimik Þ
� 1

Ni

X
ik

1

Bimik

 !
: ð28Þ
Eqs. (27) and (28) are closed so that for any given fi a solution Bi of the system can be obtained. Since a
closed-form solution cannot be derived, we use a Newton–Raphson algorithm to obtain Bi.

The closure approximation Eq. (27) can be combined with Eq. (28) to obtain
f i

f i
’ Bi

Bi
ð29Þ
This important property will be used below.

5.2. Closing the pressure

Summing over the m’s in bin i in Eq. (21) leads to
Pi
R ¼
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ik
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which can be written as
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Using Eqs. (24) and (29), we obtain
fm � fm

f m2
¼ Bi � Bi

B2
i

’ f i � f i

f i2
ð32Þ
Then, using Eq. (32), Eq. (31) becomes
Pi
R ¼ Ei
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Then, defining vi ¼
P

ik
E

mik
R vmik =

P
ik

E
mik
R , the pressure given in Eq. (33) is simply
Pi
R ¼ Ei

R

1� vi

2

� �
Idþ 3vi � 1

2

� �
f i � f i

f i

� �
: ð34Þ
We must now introduce a model for vi. Eq. (34) in 1D becomes P i
R ¼ viEi

R. Similarly, using Eq. (21), we
obtain P m

R ¼ vmEm
R. Hence, we have
vi ¼ P i
R

Ei
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¼
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ik
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mik
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: ð35Þ
Previously, in Eq. (26), we have assumed that the binning should regroup the photons/neutrons of similar
anisotropies. As a consequence, the averaged Eddington factor should be close to the bin value. Hence, we
assume (similarly to Eq. (26)) that
vi ¼
P

ik
P

mik
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ik
E

mik
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In Section 6.3, we will test numerically the assumption that the binning does regroup photons/neutrons
such that vi is indeed close to 1

Ni

P
ik
vmik . Using the definition of vm in Eq. (22), we obtain
X
ik

vmik ¼
X

ik

1� 2
X

ik

f mik

Bimik

ð37Þ
Using (23), we have
f m

Bim
¼ 1

Bim
1

tanhðBimÞ
� 1

Bim

� �
; ð38Þ
which when used in Eq. (37) leads to the approximation for vi:
vi ’ 1

Ni

X
ik

vmik ¼ 1� 2

Ni

X
ik

1

Bimik tanhðBimik Þ
�
X

ik

1

ðBimik Þ
2

 !
: ð39Þ
The pressure model given in (34) with vi defined by (39) is closed since Bi is given from the anisotropy factor
fi through the relationship (27).

We have used only three assumptions to derive the by-bin moment model: the form of the underlying inten-
sity (cf. Eq. (18)) and the approximations that the anisotropy and the Eddington factors in the bin are close to
their respective bin-averages (cf. Eqs. (26) and (36)). These assumptions will be tested numerically in the next
section. Eqs. (27), (39), and (34) define the by-bin pressure model. The multi-bin moment model is summarized
in the following section.
5.3. Summary of the multi-bin model

The 3D multi-bin moment model we have developed is given by
otEi
R þr � Fi

R ¼ c4p�riS
i � c�riEi

R; ð40Þ
1

c
otF

i
R þ cr �Di

REi
R ¼ ��riF

i
R: ð41Þ
in which the multi-bin Eddington tensor Di
R is given by
Di
R ¼ Pi

R=Ei
R ¼

1� vi

2

� �
Idþ 3vi � 1

2

� �
f i � f i

f i

� �
: ð42Þ
It is a function of the anisotropy f i ¼ Fi
R=ðcEi

RÞ and the Eddington factor vi given by
vi ¼ 1� 2

N i
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2

 !
: ð43Þ
The scalar vi is defined in terms of the scalar Bi which is a solution of the following nonlinear scalar rela-
tionship for any given anisotropy norm f i ¼ F i

R=ðcEi
RÞ:
f i ¼ 1
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ik
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tanhðBimik Þ
� 1
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X
ik

1

Bimik

: ð44Þ
Note that it could be possible to further simply the modeling but we do not recommend it; an analytical
expression for Bi can be obtained from Eq. (44) if a Taylor expansion is performed for small anisotropy fm

in Eq. (23). However, the resulting models for vi have not been found accurate, which is not surprising since
fm 	 0 does not hold in our test cases.

For the numerical treatment of this system, the reader can refer to [65,22]. In [20,21,23,24,66], implicit for-
mulations and preconditioning methods, which are usually mandatory for radiation-hydrodynamic problems,
are presented.
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5.4. Bin construction

In the following problems, we form the bins using a spatial average opacity as follows. The function C(m)
returns the bin number of frequency m:
4 In
CðmÞ ¼ 1þ floor ðn� 1Þ logð�rmÞ � logð�rminÞ
logð�rmaxÞ � logð�rminÞ

þ 0:5

� �
; ð45Þ
where the function floor(x) returns the greatest integer value less than or equal to x; �rm is the spatial average of
r(m), and �rmax and �rmin are its maximum and minimum values. n is the total number of bins.

Such a binning should be effective for spatially constant opacity, but, as we will see in the next section, it is
far from being optimal in the variable case.4 It creates in fact unoccupied bins for some radii. On the other
hand, it is conceptually easy and of low numerical cost to bin using the function C. As a result, the creation
of the source terms, mean absorption coefficients, and closure terms is neither difficult nor very costly. In addi-
tion, since such a binning does not depend on the radius (because mean opacities are used) the system of Eqs.
(40) and (41) does not contain boundary terms due to the non-commutation of spatial differentiation and bin
integrals.

Many criteria can be chosen to define bins. For instance, the pickets (bin-dividing opacities) have been cho-
sen so that the ratio between successive values is roughly the same in [45]. Another example is in [53], and
references in it, where the binning of solar atmospheres is explained. Particular care is needed for this process
in order to minimize the number of bins while accounting for most of the physics to obtain good accuracy. As
pointed out in the introduction, many other binning methods of much more sophisticated forms have been
proposed, but complexities arise in these cases. For instance, when a method introduces a PDF in the re-
arrangement/averaging procedure, it should be checked that the PDF does not need to be also included in
the closure model in order to be mathematically consistent.

5.5. On a general multi-band formulation

The closure has been derived for a set of frequencies which we have assumed to be representative of the
whole spectrum. However this is not mandatory. The derivation is unchanged if we would have accounted
for frequencies inside a group, like in the ODF or multi-band methods [3]. It is hence possible to solve
Eqs. (40) and (41) for each bin inside given groups. The sum of moments of the bins will give the moment
in a given group and the sum of the moments of all groups will provide the moment on the whole spectrum.
The advantage is that the propagation is always solved in the bin, which, we claim, is a guarantee of better
accuracy. Eqs. (40) and (41) describe thus a general multi-band moment method, but for which the binning
has not been assumed spatially dependent. However, if one uses a large number of groups such that there
are not many frequencies left for the binning, then the hypotheses used in the derivation would not been sat-
isfied and the model accuracy would be degraded. A division by group may separate opacities of the same
order of magnitude into different groups, leading to inefficiency. There is thus a trade-off between the number
of groups and the number of bins. We believe the best accuracy is likely to be obtained when a small number
of frequency groups are defined, following for instance a grouping into X-rays, EUV, UV, V, IR, and MW,
leaving inside each of them many frequencies to be binned together. That way one also gets access to by-group
quantities, like the flux in the IR or the optical emitted power in the visible, etc., which can be very important
for engineering purposes.

We note that the problem of non-commutation of operators, coming from the re-arrangement of the opac-
ity and which we avoid here by only considering either spatially constant opacities or a mean-opacity binning,
is common to any multi-band formulation and is not a result of using moment methods. This problem should
be handled as it is in other methods, such as DOM or as explained in [56].
particular in the solar case, where large variations of the opacity occur along the radius.
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6. Numerical results

6.1. Radiation in a spherical solar atmosphere

We wish first to assess the accuracy of the closure for vi given by (43) and (44) without the approximation of
using a moment method. To do this, we use an RTE solver to obtain an accurate intensity and then use this
intensity to compute Ei

R;F
i
R, and Pi

R using Eqs. (4)–(7). The exact values of the Eddington tensor are then
Pi

R=Ei
R. The model vi is evaluated from (43) and (44) using these same Ei

R and Fi
R. This technique has been fully

explained and used in [18] (where the same code is used to obtain the intensity). This method allows us to
determine if the closure expression is accurate and, since in the moment approach the closure constitutes
the crucial approximation, gives information on the accuracy that can be expected from it.

In this section, we will focus on demonstrating the validity of the assumptions used to derive the closure and
on its accuracy. We will show that the non-linearity of the closure is trivial to solve, which leads to a readily
computable model, and we will assess the closure performance on a complex test case of interest: the solar
atmosphere. We will also compare our closure with the P1 one, i.e. vi = 1/3 for every r, m, and bin. We believe
that a solid theoretical and numerical demonstration of the validity and usability of the closure will give con-
fidence to those willing to use the systems (12)–(15).

The temperature and opacity profiles of our spherically symmetric solar atmosphere are shown in Figs. 1
and 2 respectively. The domain starts from below the visible surface (a very opaque region), passes through the
surface (located between r = 696,000 km and 696,050 km), and ends at 600 km altitude, in the solar chromo-
sphere. These profiles have been provided by Stein and Nordlund [48,50,51,49,52]. We also plot in these figures
the radiative temperature TR = (ER/a)1/4 and the radiative source term div(FR) obtained by solving the RTE
for 2748 frequencies. We use a ray-tracing code written for a spherically symmetric configuration [18]. The
source term profile shown in Fig. 1 is very typical of the solar atmosphere. Inside the sun, emission compen-
sates absorption (giving radiative equilibrium, div(FR) . 0). At the surface, a strong cooling by radiation
occurs due to strong emission, div(FR)� 0. In the lower chromosphere, absorption occurs (the absorption
peak is at r = 696,100 km).

Fig. 3 (left) and (right) shows the percent error of the closure model for different numbers of bins.5 This
error is integrated over all bins or frequencies. In the case where there are as many bins as frequencies (curve
annotated with crosses), the error reaches a peak of 10% just above the surface and is bounded by 5% in the
chromosphere. These results are very good and demonstrate the validity of a Wien function to close the sys-
tem. In the case where there are as many bins as frequencies, this is the only assumption used in the derivation.
For low numbers of bins n = 8,10,15, the peak of error is around 12% and the error is bounded by 10% in the
chromosphere. The maximal error is reached for the case of one single bin which is the gray case; it confirms
the non-gray character of this atmosphere.

These results show that the bin closure is accurate. However, these results must be tempered by two
remarks: first, due to the particular choice of the binning, many bins are unoccupied. This means than even
fewer occupied bins are needed to reach a certain accuracy. By definition, we consider a bin to be occupied if it
contains a reasonable fraction of the total number of frequencies and if the total intensity in those frequencies
is not negligible; otherwise we call it unoccupied. Because some bins are unoccupied the percent error is effec-
tively lowered. Hence these results must be complemented by measuring the error in each bin or frequency.
This will be done in the following paragraphs.

6.1.1. Infinitely narrow bins
Until otherwise noted, the x-axis represents the solar radius in kilometers and the wavelengths are given in

Angstroms. The names of the quantities plotted in the figures are given in the captions along with their units.

6.1.1.1. We first test our model using one bin per frequency to see in isolation the accuracy of the closure, to
validate the Wien form of the intensity, and to be able to see afterward the loss of accuracy due to binning.
5 The percent error is the difference between the model and exact expressions as a percentage of the exact one.



Fig. 2. (Left) opacity values r(m) for 2748 m’s. (Right) r(m) for all radii.
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Fig. 4: the exact (left) and modeled (right) Eddington factors are shown for each of the 2748 frequencies. They
are found to be very similar. Fig. 5 shows the percent error (for a clear comparison) of our closure and of P1.
Our model has an error bounded by 22%. The large errors (from 15% to 22%) occur right at the surface and in
the absorption region, i.e. for r 2 [696050, 696150] km where the model, instead of staying at equilibrium, i.e.



Fig. 4. Sun with all m’s. Exact (left) and modeled (right) Eddington factor.

Fig. 5. Sun with all m’s. Error of the modeled Eddington tensor (left) and of P1 (right).
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v = 1/3, incorrectly perceives some anisotropy and raises v up to 0.4. The exact Eddington tensor goes slightly
below 1/3 (the minimal value is 0.3 in the absorption region). We believe this error is acceptable since at
slightly higher radii the errors are below 15% at worst and mostly below 10%.6 The comparison with P1 in
Fig. 5 (right), where v = 1/3, shows a clear improvement brought by our modeling. Fig. 6 shows the radiative
energy and fluxes: the radiation is concentrated below 20000 Å. The dominant part is below 5000 Å. Now,
reconsidering the closure model, it can be seen that below 5000 Å, the model is accurate with a peak error
around 12–15% and around 5% in the chromosphere. The anisotropy, Fig. 6 (right), is however not too high,
mostly around 0.5–0.6, so we also tested the model on a higher anisotropy case (cf. following subsection).

6.1.1.2. On the P1 closure. Looking again at Fig. 1 (right), one could conclude, looking at only m-integrated
quantities, that since the Eddington factor of this solar atmosphere is between 0.3 and 0.45, P1, which models
this term by 1/3, is usable. This would be wrong, as we can see by looking at the by-bin quantities. Fig. 6 (left)
and (center) shows radiative cooling occuring for wavelengths k 2 [2000, 10,000] Å. In this region, the error
6 See also in Fig. 3 for the integrated error.



Fig. 6. Sun with all m’s. Moments: Em
R in W/m�3 s�1 (left), F m

R in W/m�2 (center), and anisotrpy fm (right).
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Fig. 7. Sun with three occupied bins. Exact and modeled Eddington factor.
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committed by the P1 closure (Fig. 5 (left)) goes from 20% to 30% for k 2 [5000, 10000] Å and from 30% to 40%
for k 2 [2000, 5000] Å, where radiation is dominant. The latter corresponds to anisotropic Eddington factor
values around 0.6, which are approximated by an isotropic value of 0.33. This explains why P1 will overesti-
mate the cooling by radiation when used in computations of the solar atmosphere. It also reminds one to look
at non-m-integrated quantities.

6.1.2. 3, 10, 21 Occupied bins

In this subsection, we test the closure using 5, 15, and 40 bins. The binning is done according to Eq. (45).
Low and high bin numbers represent respectively low and high mean-opacity values. As stated, the simple bin-
ning method retained here is far from being optimal (in particular for opacities varying in space). As a result
many bins are unoccupied or contain just a few frequencies. In fact, we are actually treating cases of 3, 10, and
21 occupied bins and have thus chosen to refer to the cases as 3, 10, 21,7 but we also plot the solution for some
of the lightly occupied bins to assess the model’s behavior in such cases and to show that it is not singular.

6.1.2.1. Three occupied bins. Fig. 7 shows the closure model results compared to the exact ones when three
occupied bins are used. The model is unable to go under v = 1/3 (this shortcoming is inherent to moment mod-
els and is not a function of the number of bins). Its error is maximal close to the sun’s surface, where the radi-
ation leaves equilibrium. The model is more accurate for nearly transparent bins, which is a surprising and
helpful property: we can presume that for hot sources radiating into cold media, the fluxes will be correctly
7 Contrary to the nomenclature used in Figs. 3 and 16.
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limited. Even though the correct trends are computed, poor accuracy of the model is evident, indicating that
more bins are needed.

6.1.2.2. Ten occupied bins. Fig. 8 shows the model and exact closure model results for the 10 occupied bins case.8

Fig. 9 (left) quantifies the comparison by showing the percent error. The model is found to be accurate for the
seven first bins. For those bins, the maximum loss of accuracy occurs close to the surface at exactly
r = 696,100 km (the region of strong absorption) and is around 15% due to an overestimation of v Fig. 10.9

The accuracy is between 5% and 10% in the atmosphere and gives confidence of obtaining correctly limited
fluxes. However the model has very poor accuracy for bins 8–10. This fortunately does not matter as those bins
do not emit significant radiation: the plots of both radiative energy and fluxes in Fig. 10 (left-center) attest that
radiation is concentrated in bins 1–6, where the model is very accurate. In addition, bins 8–10 do not contain
many frequencies (see Fig. 11 (center)). Those poor results (bin 8–10) are simply due to our rough binning and
do not represent a failure of the method. In contrast, the P1 closure is very inaccurate, particularly for the low
bin numbers (1–4) where accuracy matters the most (see Fig. 9 (right)). The plots of the moments (Fig. 10 (left-
center)) also show that this atmosphere could be successfully solved by only considering those six occupied bins.
Since the closure is found to be pretty accurate, the full moment solution is expected to be accurate.

In Fig. 11 (left), the logarithm of the number of iterations needed for the Newton algorithm when solving
Eq. (27) is plotted. Very few iterations are needed (<10 at most radii10), and this number increases only close
to equilibrium, where the solution is known (i.e. vi = 1/3) and hence does not need to be computed. The neg-
ative values of the logarithm correspond to 0 iterations. These results show that there is no difficulty and no
great numerical cost in solving Eq. (13).

6.1.2.3. Twenty-one occupied bins. Our next case considers 40 bins of which only 21 are occupied (see Fig. 11
(right)). According to the plots of the moments in Fig. 14 (left-center), it can be seen that radiation is concen-
trated from the first to the fifteenth bins. For those bins, looking carefully at both model and exact closures,
we see that the model values are slight overestimates, but overall good agreement is observed (Fig. 12). The
plot of the percent error in Fig. 13 (left) confirms that the error is very low. The improvement compared to P1

is again confirmed in Fig. 13 (right). As in the cases with fewer bins, the model has poor accuracy in lightly
8 See Fig. 11 (center) to see the number of m’s per bin.
9 This can be corrected easily by adding an ad hoc condition such as vi = 1/3 if fi < 0.1 or 0.2; see fi plotted in Fig. 10 (right). Note also

the accuracy of P1 just at r = 696100.
10 With a convergence criterion of 10�4.
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occupied bins and in those where the radiation is weak (i > 15), a fact we have not explained but which is
inconsequential. It is clear that increasing the number of occupied bins from 10 to 21 improves the accuracy
(as was seen in Fig. 3), in particular in the absorption zone. We also find that the number of Newton iterations
remains as low as the 10 bins case.

6.2. Radiation in a artificial spherical atmosphere

In this section, we consider the case of an artificial atmosphere (noted AA in the figures) in order to increase
the overall radiative anisotropy and to create a very challenging test for our model. To do this, we simply
decreased the radius of the solar atmosphere by a large factor. The x-axis of the following figures represents
the radius of the artificial atmosphere in meters and the wavelength is given in Angstroms. In Fig. 15 (right),
the absolute value of the radiative source term is plotted: the first peak for r 2 [18, 22] km corresponds to a
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strong emission zone (much stronger than in the solar case). The second peak for r 2 [22, 23.5] km corresponds
to an absorption zone. In Fig. 15 (left), we plot the integrated anisotropy and Eddington factor; these can be
compared with Fig. 1 (left). For the solar case, the integrated Eddington factor is bounded above by 0.45 and
the anisotropy by 0.5, which is not a very anisotropic average.11 Reducing the radius of our new star to
roughly 20 km and its atmosphere to roughly 7 km, we produce a higher average anisotropy, leading to an
increased Eddington factor reaching 0.7. Even though this might not seem very anisotropic, we can see in
Fig. 6 (left) that it leads, for certain wavelengths, to strong radiation propagating with a anisotropy fm between
0.8 and 0.9. We thus have created much more anisotropic radiation, in particular for wavelengths below
5000 Å. Comparing the fm’s for the sun plotted in Fig. 6 (left) and those of the artificial atmosphere plotted
in Fig. 19 (left) confirms this.

The plot of the integrated percent error of the closure model in Fig. 16 shows that the model becomes accu-
rate in average starting from five bins (with errors <15%). As before, we should note that many bins are unoc-
cupied, and these results need to be scrutinized. We will see below in detail that, as for the sun, an acceptable
accuracy, i.e. a peak error between 10% and 15% in critical zones and an error contained mostly between 5%
and 10% outside, occurs when 5–10 bins are fully occupied. Looking at the plots of the error obtained from all
m’s (curve with crosses) we see that the error is here bounded by 12%, but is higher than in the sun case. We are
unable to explain why the error increases as the number of bins increases in the far outer atmosphere. As for
the solar case, we complement below these results by a finer analysis for each frequency.
11 It should be noted that there is stronger anisotropy at some wavelengths (with fm . 0.7) participating in the cooling.
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6.2.1. Infinitely narrow bins

Fig. 17 shows the exact and modeled Eddington factor; we find again that the model captures most of the
complexity of this term. Fig. 18 shows the percent error for our model (left) and for P1 (right). Before analyzing
these results, we must refer to Fig. 19 (left-center) where the moments are plotted. It can be seen that radiation
is important for k 2 [2000, 20,000] Å and is very strong for k 2 [2000, 10,000] Å. First, for k 2 [2000, 10,00] Å,
the large error of the closure model, from 15% to 20% occurs around r = 21 km, where the radiative fluxes are
maximal and emission is dominant. In this region, the value given by the model is too high: the approximate 1/
3 value is overestimated by 20%, i.e. 0.4 instead of 0.3. We have here a case in which the emission is 200 times
higher than in the solar case (106 W/m3 instead of 5000 W/m3) (cf. Figs. 1 and 15). In the absorption region,
around 22 km, the error is mostly between 10% and 15%, as in the sun case. In the outer atmosphere the error
is low, around 5% to 10%. This indicates that, for those wavelengths, the closure model, when used in a
moment model, will correctly propagate the fluxes when they are strong. Fig. 19 (center) confirms that it is
in this region (r > 21 km) that fluxes are dominant. Second, for k 2 [10,000, 20,000] Å, our comments are sim-
ilar, but we notice in addition a 20% error zone for r 2 [25, 27] km which we cannot explain.

Overall these results are poorer than in the sun case, confirming that this case is more challenging. How-
ever, we still consider that they demonstrate the accuracy of the closure. In comparison, P1 is mostly wrong
with errors between 50 and 60% for k 2 [2000, 20,000] Å and r > 21 km, i.e. in regions where radiation is
concentrated.
Fig. 17. AA with all m’s. Exact (left) and modeled (right) Eddington factor.



Fig. 18. AA with all m’s. Error of the Eddington factor: present model (left) and P1 (right).

Fig. 19. AA with all m’s. Moments: Em
R in W/m�3 s�1 (left), F m

R in W/m�2 (center), and anisotrpy fm (right).

J.-F. Ripoll, A.A. Wray / Journal of Computational Physics 227 (2008) 2212–2237 2231
6.2.2. Twenty-one occupied bins

We now focus on the effect of the binning on the accuracy of the closure model. We consider 40 bins, but
only 21 are occupied and representative. The case of 3 and 10 bins are not presented here but the same con-
clusions can be drawn. Fig. 20 shows the exact and modeled closures. For bins numbered lower than 16, they
agree well. The plot of the moments in Fig. 22 indicates that radiation occurs for bins numbered lower than 15,
with strong radiation from bin 5 to bin 8 (see also Fig. 23 (right)). The percent error plotted in Fig. 21 shows
that the model is accurate for bins numbered lower than 16 (<5%, 10%, 15% error). Fig. 21 also shows an
obvious improvement compared to P1. The large 15–20% error occurs around r = 21 km, where the model
value rises to around 0.4 instead of staying close to 1/3. This is the main critic, but, as previously mentioned,
this can easily be corrected, and should have no major repercussions. Fig. 23 confirms that a small number of
Newton iterations is needed (left) and indicates how the bins are occupied (right).

In Fig. 23 (center), looking at the logarithm of the dimensionless quantity Bið1=NiÞ
P

ik
mik , it can be seen that

the behavior of Bi, solution of Eq. (27), is not simple, making the iterative solving of Eq. (27) unavoidable.

6.3. Testing the two mathematical assumptions

We have demonstrated in the previous Sections 6.1.1 and 6.2.1 that the choice of a Wien intensity to close
the system is reasonable. This section is devoted to the direct testing of the two remaining approximations Eqs.
(26) and (36): f i ’ 1=Ni

P
ik

f mik and vi ’ 1=N i
P

ik
vmik .
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We consider the two previous cases of 21 occupied bins for the solar atmosphere (Fig. 24) and the artificial
atmosphere (Fig. 25). The x-axis represents the radial direction. The notation of superscript b = 5, 6, . . ., etc.
in the key means bin i = 5, 6, . . .. We plot the anisotropies in the two left columns and the Eddington factors in
the two right columns in each of these figures for the bins in which radiation is strong, i.e. bins i = 5 to i = 10
(cf. Figs. 14 and 22). In each of the sub-figures in the left columns we plot the fm’s for all m’s in these bins (small

circles), the bin value of the anisotropy in the bin i, i.e. f i ¼
P

ik
F

mik
R = c

P
ik

E
mik
R

� �
(plain curve), and the average

anisotropy f av ¼ 1=Ni
P

ik
f mik (curve with large circles). Comparing the plain curve with the curve annotated

with large circles gives the accuracy of the approximation made in Eq. (26). Similarly, in the two right columns
Fig. 24. Sun with 21 occupied bins. Plots of the m-values, the bin value, and the average m-value of the anisotropy (two columns on the left)
and the Eddington factor (2 columns on the right) for bin numbers 5–10.



Fig. 25. AA with 21 occupied bins. Plots of the m-values, the bin value, and the average m-value of the anisotropy (2 columns on the left)
and the Eddington factor (two columns on the right) for bin numbers 5–10.
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of both Figs. 24 and 25, we plot, in each one of the sub-figures, vm for all m in the bin n (small circles), the bin

value of the Eddington factor in bin i, i.e. vi ¼
P

ik
P

mik
R =

P
ik

E
mik
R

� �
(plain curve), and the average vav ¼

1=Ni
P

ik
vmik (curve with large circles). Again, comparing the plain curve with the curve annotated with large

circles gives the accuracy of the approximation made in Eq. (36).
All comparisons must be done at a given radius to be meaningful. For instance, the 5th bin in Fig. 25 con-

tains anisotropies mostly around 0.7–0.8 at a radius of r = 24 km (a nearly transparent bin), while the 10th bin
contains anisotropies mostly around 0.4–0.5 (a more opaque bin) at this same radius. The reader should also
not be misled by the following visual artifact: in the plots, many of the small circles represent multiple fm’s or
vm’s drawn on top of each other. The superposition cannot be detected by eye. However, the reader can see in
Fig. 11 (right) for the solar atmosphere (and in Fig. 23 (right) for the artificial atmosphere) the actual number
of frequencies in the bin and so get an idea of the number of superposed values. The mean value (curve with
large circles) also gives an indication of which values of fm (or vm) superpose. However, the average value is only
computed for frequencies in [0.2, 3] · 104 Å for the sun and in [0.1, 6] · 104 Å for the artificial atmosphere.
This is done in order to account only for those anisotropies (or Eddington factors) computed from a non-neg-
ligible intensity. In Figs. 24 and 25, in comparing the two plain curves, it can be seen that overall the approx-
imations fi . fav and vi . vav are valid. In the case of the sun and of transparent bins (i = 5,6,7), the
approximation fi . fav is rough (particularly for i = 5). However vi . vav is a reasonable approximation in
all cases, except for i = 5 where we found it crude.

The results are much better for the artificial atmosphere. Comparing the two curves, it can be seen that
fi . fav and vi . vav are valid. Additionally, we see that the fm and vm are less scattered from their mean values.
Here, one could even assume that fi . fm and vi . vm (which would be rough for fi for i = 5,6,7). Note that
such an approximation is never used in the paper. When looking at the plots as a sequence over the bin num-
ber (for a given radius), we can see that the binning sorts the rays by decreasing anisotropies and Eddington
factors as expected.



6.4. Summary of all results


 The Wien form of the pseudo-intensity has been found to be an accurate approximation of the intensity
when used to derive a closure model. It also confirms that the maximum entropy closure is a valid concept.

 The mathematical approximations used to derive the by-bin closure model have been tested numerically

and have been found admissible on both a 1D spherically symmetric atmosphere of the sun and an artifi-
cially complex 1D spherically symmetric atmosphere. The values of the anisotropy and Eddington factor in
the bin can be approximated by their average values in the bin.

 The binning regroups the photons/neutrons according to their travel regime.
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tially or temporally non-constant opacities is needed. The closure remains unchanged in that case, and our
next effort will be oriented in this direction.
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